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A B S T R A C T   

Heterogeneous materials with randomly distributed pores are ubiquitous, such as sintered silver nanoparticles, 
concrete materials, 3D printed polymers, and natural bones. Recent experimental investigations have revealed 
that porosity and also pore-related geometries (size, number, shape, distribution and alignment) have significant 
impacts on the mechanical behavior of random porous materials. However, existing studies focus on the porosity 
effect while ignoring other pore features such as pore size and pore shape. Our research is dedicated to a 
computational framework for generating isotropic/anisotropic random porous materials using Gaussian random 
fields with stochastic pore size and shape factor and addressing the mechanical properties and behavior of brittle 
fractures using a fracture phase-field model with a preferred degradation function. Sintered silver nanoparticles 
with typical randomly distributed pores, as representative porous materials, are chosen for their promising 
applications in emerging fields such as power electronics and wearable devices. In order to emphasize the effect 
of pore size and shape, 420 random samples with a fixed porosity were generated to discuss the stress–strain 
response during fracture and to establish statistical relationships between pore feature distributions and me
chanical properties such as Young’s modulus, UTS, and average historical energy. Our findings suggest that the 
statical attributes of the pore sizes and shape factors significantly affect the material performance related to the 
mechanical properties and fracture behavior, which could give a better understanding of the random porous 
materials and guide reliability-based material design optimization.   

1. Introduction 

Nowadays, sintered silver nanoparticles, a promising candidate for 
electronics interconnection materials, are widely adopted in emerging 
electronics technologies such as next-generation power electronics 
(Ding et al., 2021), polymeric devices (Chiappone et al., 2018), skin- 
mounted devices (Sanchez-Romaguera et al., 2015), printable elastic 
conductors (Matsuhisa et al., 2017), and wearable printed circuits 
(Zhang et al., 2020). Owing to its low sintering temperature, high 
melting point, and excellent thermal and electrical conductivities, sin
tered silver nanoparticles allow reliable electrical and mechanical in
terconnects to be used for various substrates and harsh environments. 
Generally, silver nanoparticle ink or paste is prepared with silver 
nanoparticle powder dispersed in organic components. During the 

sintering process, organics among silver nanoparticles are removed by 
means of thermal sintering (Chen and Suganuma, 2019), laser sintering 
(Liu et al., 2021), infrared sintering (Chen et al., 2020), microwave 
sintering (Jung et al., 2016), and chemical sintering (Okada et al., 
2019). Exposed nanoparticles with a high surface free energy can be 
rapidly linked together by interconnecting and necking to form coarse- 
grained and densified porous structures. However, A massive number of 
pores in the sintered structure cannot be entirely removed due to low 
temperature and low-pressure conditions, even at room temperature and 
pressureless environments. The pores induce considerable uncertainties 
in the material properties of sintered silver nanoparticles, such as 
Young’s modulus, shear strength, and fracture toughness. 

Several studies have attempted to establish the relationships be
tween porous microstructures and the mechanical properties of sintered 
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silver nanoparticles (Chen and Suganuma, 2019; Cham, 2019; Zabih
zadeh et al., 2017). Porosity has been widely investigated in previous 
works as one of the critical factors impacting the mechanical properties 
and fracture behavior of random porous structures (Marvi-Mashhadi 
et al., 2021; Vazic et al., 2021). Numerous experiments reveal that 
porosity in sintered silver nanoparticles has a significant effect on 
Young’s modulus, yield strength, ultimate tensile strength (UTS), strain 
to failure, and fracture toughness. It is extremely challenging to obtain 
the statistical results through in-situ testing of a large number of meso- 
scale random porous structures, our previous work investigated the ef
fects of porosity on Young’s modulus, UTS, and strain to failure using the 
phase-field model approach and obtained numerical results that are 
consistent and in good agreement with experimental results (Su et al., 
2021). However, the pore network’s characteristics include not only 
porosity but also their size, number, shape, and distribution, which are 
essential to the mechanical properties of random porous materials 
(Watring et al., 2022). Choe et al. (Choe et al., 2018) performed thermal 
aging on the sintered silver, which resulted in changes in microscopic 
characteristics such as pore size and grain size. The tensile strength and 
fracture mode of micro-porous silver are affected by pore size, grain size, 
and porosity in a complicated and significant way. Meanwhile, the in
fluence of pore shapes in the sintered silver materials cannot be ignored, 
so the statistical distributions of shape factors during pore formation and 
thermal aging are investigated. Zubir et al. (Mohd Zubir et al., 2019) 
attempted several processing settings in order to sinter silver nano
particles. The distributions of both pore size and form factor in cross- 
section morphologies were statistically investigated, and it was found 
that the sintering temperature, pressure, and duration, as well as heating 
rate, have significant effects. Besides, Tan et al. (Tan et al., 2020) con
ducted thermal aging tests at temperatures ranging from 125 ◦C to 
350 ◦C, and counted the corresponding distributions of pore size and 
shape factor. Non-in situ shear testing revealed strong correlations be
tween shear strength and the distributions of pore size and shape factor. 
Moreover, the pore feature distributions of random porous materials 
have considerable differences, especially for pressureless and low- 
pressure sintering (Lee and Lee, 2021). As a result, when simulating 
and analyzing a random porous structure, the distribution of pore fea
tures in the pore network should be taken into account. The pore 
characteristics of sintered silver nanoparticles are always statistically 
assessed after destructive tests, hence microscopic statistical in situ tests 
are extremely complicated and costly. Therefore, an approach to 
describe random porous materials and simulate the fracture process is 
greatly anticipated to give the statical relationships between pore 
feature distributions and mechanical behavior for a characterized 
random porous structure. 

Statical descriptors for random heterogeneous materials are primary 
and fundamental to reconstructing the sintered silver nanoparticles. 
Gaussian random fields, describing the points in some space as a multi
variate Gaussian distribution, are widely used in the modeling of random 
porous media (Jiang et al., 2013), geostatistical spatial fields (Fuglstad 
et al., 2019), and medical and biological images (Burt et al., 2020). Neu
mann et al. (Neumann et al., 2019) constructed a three-phase micro
structure model using a Gaussian random field containing silver-, 
polytetrafluorethylene-, and pore-phases. The porous structure of the 
material sample was obtained by focused ion beam (FIB), which was 
compared with the model realization finding similarities in the spatial 
continuous phase size distribution. Additionally, a large number of 
structures can be generated to predict material properties statistically 
(Stenzel et al., 2017). Blatny et al. (Blatny et al., 2021) investigated the 
micromechanics of porous brittle solids, proposing a single-cut Gaussian 
random field microstructure to institute the porous media’s spherical/ 
particulate model. Based on the Gaussian random field model, the finite 
size effects, discretization errors, and statistical structural fluctuations 
were discussed for a typical porous media. However, the above research 
focused on uniformly isotropic microstructures, whereas random porous 
materials with structural anisotropy should be explored further. Gao et al. 

(Gao et al., 2021) developed microstructure models of a variety of random 
heterogeneous materials, ranging from two to three dimensions, two to 
multi-phase, and isotropic to anisotropic. They discovered that the dis
tribution attributes of material properties differ between isotropic and 
anisotropic microstructures. Further, Zerhouni et al. (Zerhouni et al., 
2021) investigated the effect of parameters such as porosity and pore 
aspect ratio on elastic parameters such as bulk modulus and shear modulus 
in an isotropic random porous structure. These studies investigated me
chanical properties but only focused on elastic properties without taking 
fracture processes into account. Meanwhile, the pore feature parameters 
are only discussed as a single value or mean value, failing to establish the 
correlation between the pore feature distribution and mechanical prop
erties. This motivates this study to establish isotropic or anisotropic 
Gaussian random fields for describing the random porous structure of 
heterogeneous materials, as well as to investigate the correlation between 
pore feature distributions and material properties in depth. 

Moreover, fracture phase-field models were employed to describe the 
stress–strain responses and fracture behavior of materials driven by various 
types of energies, such as elasto-plastic (Duda et al., 2018; Fang et al., 2019), 
thermo-elastic (Miehe et al., 2015); viscoelastic (Yin and Kaliske, 2020), 
elasto-viscoplastic (Cheng et al., 2017); and chemo-mechanical energies 
(Miehe et al., 2016; Schuler et al., 2020). Also, the highly accurate degra
dation functions of the fracture phase-field model were thoroughly inves
tigated (Arriaga and Waisman, 2018; Kuhn et al., 2015; Sargado et al., 
2018). Based on the fundamentals of phase-field models, Eid et al. (Eid et al., 
2021) detailed the effective elastic, toughness, and strength properties of 
three microstructures at the mesoscopic scale in a multiscale analysis of 
brittle fracture in heterogeneous porous materials. Chen et al. (Chen et al., 
2019) investigated crack deflection and penetration in a heterogeneous 
microstructure and accurately predicted the effect of grain boundary sizes 
on the crack path. Cao et al. (Cao et al., 2020) proposed an FFT-based phase- 
field model to solve stress–strain and crack phase field problems of het
erogeneous materials with high efficiency. In addition, Ernesti et al. (Ernesti 
et al., 2020) addressed phase-field crack issues for heterogeneous micro
structures and acquired the crack surface and stress–strain response of the 
fiber-reinforced composites. The fracture phase-field model is a powerful 
tool to predict the mechanical properties and fracture processes in hetero
geneous microstructures (He et al., 2022; He et al., 2020). 

In this study, we proposed a one-cut Gaussian random field model to 
describe isotropic or anisotropic random porous structures for sintered 
silver nanoparticles under pressure and pressureless conditions. A sta
tistical analysis of pore size and shape factor was conducted to under
stand the feature lengths in the Gaussian random field model. 
Furthermore, a fracture phase-field model with a proper degradation 
function was adopted to match the brittle fracture of sintered silver 
materials. Based on the above models, the stress–strain responses of the 
420 generated samples with varying pore features, such as pore sizes and 
shape factors, were computed throughout the fracture process. The 
mechanical properties of the 420 samples were also calculated and 
analyzed, including Young’s modulus, UTS, and average historical en
ergy at the maximum stress point. In addition, an exploratory analysis of 
the sample sets was carried out to investigate the relationships between 
pore feature distributions and the mechanical behavior of sintered silver 
nanoparticles. The proposed framework and numerical models were also 
applicable to other heterogeneous random porous materials. 

2. Computational framework 

2.1. General statements 

This study aims to develop a better understanding of the relationship 
between microstructure attributes and macroscopic mechanical prop
erties of the sintered silver nanoparticles. First, the sintered silver 
nanoparticles are typical two-phase random heterogeneous materials 
with pore and solid phases. A mathematical model of the spatial statis
tical features is proposed using a Gaussian random field approach with a 
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constant cutting plane to describe the random heterogeneous material. 
Based on the cutting Gaussian random samples, massive voxel-based 
material matrices are generated to represent the random porous struc
tures with specific microstructure attributes. To thoroughly discuss the 
sintered silver nanoparticles under varying temperatures and pressures, 
both isotropic and direction-related pore shapes, especially flattened 
pore shapes, are considered in the model. Due to the accessible and 
adjustable sample size, further statistical analysis can be performed on 
the sintered silver nanoparticles. Secondly, the fracture phase-field 
approach is adopted to simulate the mechanical behavior during the 
fracture process and of generated samples. Multiple cracks grow paral
lelly in random porous structures with isotropic mechanical and fracture 
properties. On account of brittle fracture features in the sintered silver 
nanoparticles, a highly accurate degradation model is chosen to describe 
the stiffness matrix degradation during fracture. In addition, we assume 
the effect of the porous structure is greater than that of grain boundaries. 
Therefore, grain boundaries are not considered in this model. 
Combining Gaussian random field and phase-field approaches, micro
scopic stochastic porous morphologies, and macroscopic mechanical 
properties are analyzed with a sizable random sample. 

In this section, we use a two-dimensional tensile specimen with 
random pores to simulate the mechanical properties and fracture 
behavior. Based on previous numerical studies (Su et al., 2021; Su et al., 
2021), the specimen size is 20 μm × 20 μm, and the quadrilateral element 
is 0.2 μm × 0.2 μm, satisfying the convergence and computational re
quirements. Thus, the sample is meshed to 100 × 100 equal-sized voxels, 
as shown in Fig. 1. For microstructure attributes of Gaussian random 
fields, the feature length of the random pore ranges from 1.0 to 10.0 times 
element length, that is, from 1/100 to 1/10 of specimen length. Twenty 
samples are randomly constructed for each set of feature lengths, up to 
420 samples. The boundary conditions of pure tensile loading are illus
trated in Fig. 1. An upward displacement is applied to the top edge of the 
model. The reaction force at the top edge is calculated as an essential and 
notable output to acquire the stress–strain response. Accordingly, 
essential mechanical properties of the generated samples, such as 
Young’s modulus and UTS, could be derived from the numerical pre
dictions. Considering the gradual degradation of the solid phase materials 
and the continuous description of the smeared crack, a phase-field model 
with an exponential degradation function is employed to simulate the 
complete fracture process of random porous structures. Following the 
previous work (Su et al., 2021; Molnár et al., 2020), a two-layered finite 
element framework is implemented in Abaqus and its subroutines. 
Especially, the UEL (user defined element) subroutine is developed to 
calculate the phase-field values in the first layer. Via common variables in 
the subroutines, the degradation scaling values are delivered to the 

stiffness matrix of the solids in the second layer. Then, history elastic 
energies during degrading are returned to the first layer to drive the in
crease in the phase-field value. This staggered computational scheme is 
adopted and detailed in Section 2.3. Furthermore, because the maximum 
stress point is critical for material properties and fracture behavior, we 
chose the average history energy at this point as a remarkable output to 
investigate the energy absorption and material degradation of the 
random porous materials prior to severe condensation. 

2.2. Microstructural model of random porous structures 

To describe and present the spatial stochastic properties of the sin
tered silver nanoparticles, the Gaussian random field model is chosen on 
account of its effectiveness and robustness in random sample generation 
(Gao et al., 2021; Liu et al., 2019; Zein et al., 2019). Gaussian random field 
model could produce a certain number of two- or three-dimensional 
normalized spatial probability distributions. Then, a fixed threshold 
value can be assigned not only to transform the spatial probability dis
tribution into binary distribution (with zero representing the solid and 
one representing the pore) but also to determine the target porosity of the 
structures. The Gaussian random field model with adjustable threshold 
values is developed to generate the random porous microstructures. 

Assume that X is a real-valued stationary Gaussian random field on ℝd, 
where d is the dimensional number of the spatial model. For any collec
tion s = {s1, s2, …, sn} of finite locations, the joint distributions of X = {X 
(s1), X (s2), …, X (sn)} is multivariate Gaussian. The mean function of the 
Gaussian random field model is μ(s) = E[X(s)], and the covariance 
function is γ (s, s’) = C (h) = Cov{X(s), X(s’)} = E[(X(s) - μ(s)) (X(s’) - 
μ(s’))], where h = s - s’. The probability density function of the Gaussian 
random field model in the locations s = {s1, s2, …, sn} could be defined as 

p(X(s1),X(s2),⋯,X(sn) ) =
1

(2π)n/2
(detC)1/2 × exp

{

−
1
2
(s − μ(s) )T C− 1(s

− μ(s) )
}

(1)  

where 

μ(s) =

⎡

⎣
E[X(s1)]

⋮
E[X(sn)]

⎤

⎦ (2)  

and 

C =

⎡

⎣
γ(s1, s1) ⋯ γ(s1, sn)

⋮ ⋱ ⋮
γ(sn, s1) ⋯ γ(sn, sn)

⎤

⎦. (3) 

Let the Gaussian random field be on a two-dimensional Euclidian 
space, and the mean value of the Gaussian random field be zero. Here, a 
Gaussian autocovariance function γ(si, sj) could be defined as 

γ
(
si, sj

)
= C

(
hij
)
= C

( ⃒
⃒si − sj

⃒
⃒
)
= e

−
(xi − xj)

2

λ2
x

−
(yi − yj)

2

λ2
y (4)  

where λx and λy, are the correlation lengths in the x- and y- directions, 
representing the characteristic lengths of the two-dimensional spatial 
distribution in the x- and y-direction, respectively. Isotropic random 
fields could be generated when λx is equal to λy, and anisotropic random 
fields can be constructed by setting different values of λx and λy. 

Based on the above Gaussian random field model, spatial probability 
distributions with the size of 100 × 100 are generated and shown in Fig. 2. 
Different combinations of correlation lengths in the x-direction and y-di
rection are selected. Fig. 2 (a) to (c) show three realizations of the Gaussian 
random field with the same λx and λy, taking the values of 3.0, 5.0, and 
10.0, respectively. For all three distributions, the shape directions of the 
multivariate Gaussian distributions show an overall isotropy, both Fig. 1. Geometries and boundary conditions for the voxel-based specimen.  

Y. Su et al.                                                                                                                                                                                                                                       



International Journal of Solids and Structures 264 (2023) 112098

4

spatially and statistically. The average spans of the single-peak distribu
tions are approximately the same in both x- and y-direction. Also, the span 
of the single-peak distribution increases with the increase of the correla
tion length. For simulating the flattened pore shapes under given pressure 
and temperature, given combinations with different λx and λy are deter
mined where λx is larger than λy. Fig. 2 (d) to (f) present three anisotropic 
shape distributions of the Gaussian random field realizations. Similarly, 
with the isotropic shape distributions, the parameters λx and λy are posi
tively related to the average spans of the single-peak distribution in the x- 
and y-direction, respectively. Here, the absolute values of λx and λy decide 
the size of the shape distribution, and the relative ratio of λx and λy de
termines the flattening degree of the shape distribution. Hence, the cor
relation lengths λx and λy are utilized to manipulate the shape distribution 
features, including anisotropy or isotropy, shape size, and aspect ratio. 

Gaussian random field distributions are continuous numerical re
alizations in the sample space. However, the sampling target is a random 
porous structure with a discrete pore phase and solid phase distributed. 

To transform the Gaussian random field samples to the binary spatial 
samples, a cut-level indicator function I with constant thresholding is 
utilized, shown as 

I(x, y,F0) =

{
1, if Z(x, y) > F0,

0, if Z(x, y) ≤ F0,
(5)  

where F0 is the constant threshold value to classify the Gaussian random 
field sample into two-phase regions. When the sample value Z is above 
the cut-level plane of F0, the located pixel area is defined as the pore 
phase. Otherwise, the pixel area is set as solid. Accordingly, a specific 
amount of two-phase random porous structures is sampled and realized. 
Since this study focuses on the pore shape and distribution, the porosity 
of the generated samples is fixed to avoid the possible effects of gross 
porosity. To achieve a given porosity, an optimization algorithm is 
proposed to determine the threshold value F0, the position of the cut- 
level plane, shown in Box 1. 

Fig. 2. 100 × 100 spatial Gaussian random field distributions with different combinations of λx and λy.  

Box 1 
The optimization algorithm to generate the random porous sample with a given porosity.  

1. Generate the random sample Z (x, y) by the Gaussian random field model in a sample space (Nx × Ny) as shown in Fig. 1. Here, Nx is the 
point number in the x-direction, and Ny is the point number in the y-direction. 

2. Initialize the value Z0 for F0. For the given porosity P, the initial value Z0 for F0 is calculated by the inverse function of cumulative Gaussian 
distribution as Φ-1(1 - P). 

3. Determine the target number n of the pore area as Nx × Ny × P. 
4. Count the current number m of the pore area where the Z (x, y) is greater than F0. 
5. Optimize the threshold value F0 to achieve the minimum distance dmn between m and n by repeating the fourth step. The optimization 

equation is defined as 
Minimize:dmn = |m − n|
Subject to:n = Nx × Ny × P 
m =

∑Nx
x=1

∑Ny
y=1I(x, y, F0)

6. Obtain the optimized threshold value F0 and target sample of the random porous structure.    
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Utilizing the proposed algorithm, the cut-level plane of F0 is deter
mined, and cut the Gaussian random field into a two-phase porous 
structure with a given porosity P of 20.0 %, shown in Fig. 3. As the 
random sample without regard to any spatial positions follows the 
standardized normal distribution, the cut-level plane of F0 is located 
around the plane of the initial value Z0 = Φ-1 (0.80), computed as 
0.8462. For the six samples in Fig. 3, the values of F0 are ranging from 
0.7875 to 0.9492, which have a mean value of 0.8653. The initial value 
in this algorithm allows an efficient optimization to quickly reach the 
target porosity. 

Next, the one-cut Gaussian random field samples are transformed 
into two-value binary random porous samples, shown in Fig. 4. Pore 
size, pore shape, and pore distribution in the one-cut Gaussian random 
field samples have a greater degree of spatial randomness and fewer 
certainties. The figure indicates that the pore shape and distribution of 
the random samples are correlated with the values of λx and λy. The 
correlation lengths λx and λy affect the average sizes of the pores in the x- 
and y-directions, respectively. Fig. 4 (a) to (c) are isotopically distrib
uted with random pores, some of which are partially connected to 
others. Disregarding the connective pores, the minimum unit pore in the 
isotropic structure has a small aspect ratio and an area size positively 
related to the correlation lengths. Fig. 4 (d) to (f) are anisotropic random 
porous structures with flattened pores. The aspect ratio of the pores 
mainly depends on the ratio of λx and λy. Consequently, the flatness of 
the pores increases in the order of Fig. 4 (d), (f), and (e). Meanwhile, the 
average area of the minimum unit pore is directly associated with the 
product of λx and λy, rising in the sequence of Fig. 4 (d), (e), and (f). 

To ensure the validity and stability of the pore distribution features 
statically, 120 random samples of random porous structures are gener
ated for six equally sized groups, including Group 1 (λx = 3, λy = 3), 
Group 2 (λx = 5, λy = 5), Group 3 (λx = 5, λy = 5), Group 4 (λx = 5, λy =

3), Group 5 (λx = 10, λy = 3), and Group 6 (λx = 10, λy = 5). Statistical 
analyses of the pore number, distributions, and shape factors of the 120 
random samples are carried out. 

The closed pores, surrounded by impenetrable solids, in the random 
samples from the six groups are counted, shown in Fig. 5. Here, the order 
of the six groups follows that of the average pore numbers. The product 
of the two correlation lengths, λx and λy, is directly related to the pore 
numbers of the random porous structures. Because the porosity and total 
area of each sample are fixed at 0.20 and 20 × 20 μm2, the area of all 
pores is a constant, equal to 80 μm2. When the average area of the 

minimum unit pore is small, the pore number is inevitably large in 
porous structures with a fixed pore area. Meanwhile, the random sam
ples present the stochastic features of the pore number, essentially 
following the normal distributions. The mean value of the pore number 
in each group distinctly differs from the correlation lengths, and the 
fluctuation ranges of the pore number decrease with the decreasing 
mean values. 

Pore size (Spore), or the area of each closed pore, is statistically 
counted for each of the samples within the six groups. Accordingly, the 
distributions of the pore size for Group 1 to Group 6 are obtained and 
shown in Fig. 6. Each sample is identified by a particular gradient color, 
and its contributions to the pore size distributions are detailed. Fig. 6 (a) 
to (c) show that the pore size distribution gradually shifts toward larger 
pore sizes as the correlation lengths increase. Meanwhile, Fig. 6 (d) to (f) 
indicate the pore size distributions for the anisotropic porous samples 
tend to move rightward, with the product of the correlation lengths λx 
and λy increasing. Overall, the mean of the pore sizes for each group is 
positively correlated with the product of the correlation lengths, and the 
order of the groups by the mean of the pore sizes is the reverse of the 
order by the pore number, that is Group 3, Group 6, Group 5, Group 2, 
Group 4, and Group 1 from largest to smallest. Moreover, the standard 
deviation of pore sizes is proportional to their mean, suggesting that the 
larger the mean, the greater the fluctuation, and the smaller the mean, 
the less the fluctuation. 

Furthermore, the individual pore’s shape factor (F) is utilized to 
determine how regular the pore shape is, which is defined as 

F =
4πSPore

Ppore
(6)  

where Spore is the area of a closed individual pore in the random porous 
structures, and Ppore is the perimeter of this pore (Chua and Siow, 2016). 
The shape factor F is normally in the range of 0.0 to 1.0. The greatest 
shape factor F, evaluated at 1.0, is found in a circular pore. With 
increasing pore shape irregularity, the shape factor F steadily declines 
and endlessly converges to 0. The shape factor distributions for each 
sample group were statistically computed, with each sample’s contri
bution to the distribution highlighted, as illustrated in Fig. 7. The figure 
not only shows the mean and standard deviation of the shape factors for 
each group, but also shows the shape factor distribution’s first (Q1), 
second (Q2), and third quartiles (Q3). In Fig. 7 (a) to (c), the mean value 

Fig. 3. One-cut Gaussian random field models with different combinations of λx and λy.  
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of the shape factors in the isotropic random samples drops as the cor
relation lengths grow, indicating that the pore shape becomes more 
irregular as the pore size increases. And once the correlation lengths 
expand, the standard deviation of the shape factor rises, implying that a 
larger pore size leads to greater pore shape fluctuations. Meanwhile, 
when the correlation length is increased, the values of Q1, Q2, and Q3 
for the distributions decrease noticeably, that is, the shape factor dis
tributions are skewed to the left, with a mean value decrease of 0.0445. 
According to Fig. 7 (d) to (f), the shape factor of the anisotropic random 
samples is positively connected with the ratio of λx and λy; in other 

words, the larger the ratio, the more irregular the pore shape. The 
standard deviations of the shape factor for anisotropic random porous 
samples follow a similar pattern to isotropic random samples, i.e., the 
larger the pore size, the greater the shape factor fluctuation. The values 
of Q1, Q2, and Q3 decline considerably as the ratio of the correlation 
length grows in the shape factor distributions, with the mean value of 
the shape factors reducing by 0.0877. In summary, the mean value of the 
shape factors is influenced dominantly by the correlation length ratio 
and the mean pore size, where the correlation length ratio is more 
influential. And the average pore size in the random porous samples has 
the most effect on the standard deviation of shape factors, namely, shape 
fluctuations. Based on the regularity and randomness of the pore dis
tributions, a further study is conducted to investigate its effect on the 
mechanical properties and fracture behavior of random porous 
structures. 

2.3. Fracture phase-field model with high-accuracy degradation function 

The primary aim is to investigate the effects of pore sizes and shapes 
on the mesoscopic fracture processes and the macroscopic mechanical 
properties of the random porous structures. Here, the fracture phase- 
field model is selected to simulate the stress–strain responses of the 
silver nanoparticle solids. This phase-field method has the benefit of 
allowing numerical results to be derived from mesoscopic to macro
scopic scales. In other words, this method can calculate the crack 
network formations for a given porous structure while also providing 
reasonable overall mechanical properties of the modeled material (Eid 
et al., 2021). Importantly, various types of degeneration functions have 
been used in previous studies for fracture phase-field models, such as 
quadratic-type (Miehe et al., 2010), cubic-type (Borden et al., 2012), 
quartic-type (Karma et al., 2001), single-parameter (Wilson et al., 2013), 
exponential-type (Sargado et al., 2018) degradation functions. For 
brittle fracture of random porous structures, particularly silver nano
particles, a detailed and in-depth comparative analysis of the quadratic 
and exponential degradation functions is proffered in a one-dimensional 

Fig. 4. Random porous structures with different combinations of λx and λy (Porosity = 20.0 %).  

Fig. 5. The pore numbers in the random porous structures of the 120 random 
samples from the six groups with different combinations of λx and λy. 
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Fig. 6. The pore size distributions of the 120 samples from the six groups with different combinations of λx and λy.  

Fig. 7. The pore factor distributions of the 120 samples from the six groups with different combinations of λx and λy.  
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analytical model as shown in Appendix A. Based on the phase-field 
model with the preferred degradation function, the governing equa
tions and numerical implementation are developed. The stress–strain 
responses of random porous structures during the fracture process are 
computed in the staggered iterative approach using Abaqus and its 
subroutines as computational foundations for the analysis of the pore 
distribution effects. 

Based on the one-dimensional analytical model analysis, the fracture 
phase-field issues could be extended into the multi-dimensional case. 
Referring to the functionals of the total energy, the weak form of gov
erning equations can be obtained as follow: 
∫

Ω
g(ϕ)

dψ
d∊

: δ∊dΩ −

∫

Ω
b • δudΩ −

∫

∂Ωt
t • δudS = 0, (7)  

∫

Ω

[
g′

(ϕ)ψ(∊)δϕ+
gc

l
(
ϕδϕ + l2∇ϕ • ∇δϕ

) ]
dΩ = 0. (8) 

Meanwhile, the strong forms of the governing equations for the 
displacement are written as 

∇⋅[g(ϕ)σ ] + b = 0onΩ, (9)  

g(ϕ)σ⋅n = ton∂Ωt, (10)  

u = uon∂Ωu. (11) 

and the strong forms for the phase-field value are given as 

gcl∇2ϕ −
gc

l
ϕ = g′

(ϕ)ψ(∊)on Ω, (12)  

∇ϕ⋅n = 0on∂Ω. (13) 

Because irreversible damage is assumed in this case, historical 
maximum strain energy is used to measure the amount of energy driving 
the fracture. In addition, as no damage occurs in the elastic phase, a 
phase-field threshold ϕc is proposed to differ between the damaged and 
intact status. The historical energy function H is defined as follows: 

H (t) =

{
ψ(∊(t))if ϕ < ϕc,

max
s∈[0,t]

ψ(∊(s))otherwise, (14)  

where ϕc can be selected to match the experimental results referring to 
Fig. A. 2 and Fig. A. 3. Accordingly, equation (12) is updated as: 

gcl∇2ϕ −
gc

l
ϕ = −

nk(1 − ϕ)n− 1e− k(1− ϕ)n

1 − e− k H on Ω. (15) 

The coupled system with displacement u and phase-field ϕ is given 
by 

u =
∑m

i=1
Nu

i uiandϕ =
∑m

i=1
Nϕ

i ϕi, (16)  

where Nu
i and Nϕ

i are the node ith shape functions, and ui and ϕi are the 
node ith displacement and phase-field variables. Then, the derivatives of 
displacement and phase-field variable are expressed as 

∊ =
∑M

i=1
Bu

i uiand∇ϕ =
∑M

i=1
Bϕ

i ϕi, (17)  

where Bu
i and Bϕ

i are the derivative matrices of the shape functions. The 
residual vectors for displacement and phase-field are respectively 
considered as 

ru
i =

∫

Ω
g(ϕ)

(
Bu

i

)T σdΩ −

∫

Ω

(
Nu

i

)T bdΩ −

∫

∂Ωt

(
Nu

i

)T tdS, (18)  

rd
i =

∫

Ω

{

gcl
(
Bϕ

i
)T
∇ϕ −

[
nk(1 − ϕ)n− 1e− k(1− ϕ)n

1 − e− k H −
gc

l
ϕ

]

Nϕ
i

}

dΩ. (19) 

Regarding a finite temporal increment [tm, tm+1], the corresponding 
iteration with a Newton-Raphson nonlinear solver for numerical 
implementation can be written as 
{

u
ϕ

}

m+1
=

{
u
ϕ

}

k
−

[
Kuu 0
0 Kϕϕ

]− 1{ ru

rϕ

}

m
, (20)  

where 

Kuu
ij =

∂ru
i

∂uj
=

∫

Ω
g(ϕ)

(
Bu

i

)T C0Bu
j dΩ, (21)  

Kϕϕ
ij =

∂rϕ
i

∂ϕj

=

∫

Ω

{

gcl
(
Bϕ

i
)T

Bϕ
j −

{
nk(1 − ϕ)n− 2e− k(1− ϕ)n

1 − e− k [nk(1 − ϕ)n
− 1 ]H

−
gc

l

}

Nϕ
i

}

dΩ, (22)  

in which C0 is the material stiffness matrix.  

Box 2 
Staggered computational scheme for fracture phase-field modeling from tm to tm +1.  

1. Initialization. Obtain historical energy H m, strain energy ψm, displacement um, and phase-field ϕm at time tm. 
2. Update the historical energy. If the phase-field ϕm is less than ϕc, the updated historical energy H m+1 is ψm. Otherwise, the updated 

historical energy H m+1 is equal to the greater one of historical energy H m and strain energy ψm. 
3. Update the phase-field value. Utilizing the updated historical energy H m+1, the new phase-field ϕm+1 is given by 

ϕm+1 = Arg

{

inf
ϕ

∫

Ω
[
g(ϕ)H m+1 + gcγ(ϕ,∇ϕ)

]
dΩ

}

.

4. Update the displacement. Based on the phase-field value ϕm, the updated displacement um+1 is computed by 

um+1 = Arg
{

inf
u

∫

Ω[g(ϕ)ψ(∊) − b • u ]dΩ −
∫

∂Ωt t • δudS
}

.

5. Update the strain energy. Using the obtained displacement um+1, the strain energy is calculated as 
ψm+1 = g(ϕ)ψ(∊(u)).

6. Output the updated variables to next time increment tm+1, including historical energy H m+1, strain energy ψm+1, displacement um+1, and 
phase-field ϕm+1.    
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According to previous workflows (Arriaga and Waisman, 2018; Cao 
et al., 2020), a staggered computational scheme for fracture phase-field 
modeling is established as Box 2. Numerical simulations of random 
porous structures based on fracture phase-field modeling can be carried 
out using the proposed scheme. Material properties of sintered nano
particle silver are listed in Table 1 regarding our previous works (Su 
et al., 2021). Notably, the length scale parameter l equals two times of 
the element size. For our porous structure, the radius of curvature ρ is at 
least half the element size, so that l is not much greater than ρ in our 
model. 

3. Results 

The numerical results of random samples, based on the Gaussian 
random field model and fracture phase-field model, are obtained by 
Abaqus and its subroutines. First, Gaussian random fields with a mean of 
0 and a covariance of 1 are generated by python codes for 21 different 
combinations of λx and λy. The generated Gaussian random fields contain 
6 groups of isotropic random spatial distributions and 15 groups of 
vertically flattened random spatial distributions. λx and λy are 3, 4, 5, 6, 
8, and 10, respectively, for isotropic Gaussian random fields. Further
more, λx is bigger than λy for vertically flattened Gaussian random fields. 
As a result, for a total of 15 groups, the combinations of λx and λy are 
chosen from the values 3, 4, 5, 6, 8, and 10. A total of 420 samples were 
collected, with 20 samples taken for each combination of λx and λy. This 
work focuses on the effect of pore size and shapes on random porous 
structures without the influence of porosity. Thus, the optimization al
gorithm in Box 1 produces 420 random porous structures with a fixed 
porosity of 0.2. Then, the random porous structures are imported into 
Abaqus CAE, and material properties and boundary conditions are 
constructed in the numerical models. The phase-field simulation of the 
random porous structure is realized by Abaqus and its subroutines, 
including USDFLD and UEL. Numerical experiments of the tensile test 
are carried out to analyze the mechanical properties and fracture 
behavior of the 420 samples with different combinations of λx and λy. 

3.1. Results of the isotropic samples with the same λx and λy 

The stress–strain response of the random porous structure can show 
mechanical behavior under tension, while the crack evolution and its 
effect on stress and strain in the structure can be studied using the 
fracture phase-field simulation. Three samples with the same λx and λy of 
3, 5, and 10 are chosen and analyzed for isotropic random porous 
structures, as shown in Fig. 8. Upon reaching the maximum stress point, 
Fig. 8 (a)-(c) show cliff-like decreases in stress, with each decrease in 
stress corresponding to crack evolution in some structurally weak re
gions. Fig. 8 (a) indicates that random porous structures with small 
pores suffer small stress drops for each single crack formation, and the 
multiple and minor decreases result in an overall trend of gradual 
decrease. However, depicted in Fig. 8 (c), structures with large random 
pores appear to have a single rapid and sharp drop in stress, resulting in 
the rapid formation of a transverse crack. During the crack evolution 
process, the first crack in a random porous structure is located at the 
necking connection of two neighboring pores with large transverse sizes. 

As the cracks connect the pores, the updated porous network with the 
largest transverse size yields more cracks, forming larger networks until 
the computation is completed. Overall, as the feature lengths increase, 
the crack number decreases, and the average crack length increases for 
isotropic random porous structures. Remarkably, the longest transverse 
distance of the crack network has exceeded 70 percent of the structure 
length within a short time after the maximum stress point, and the 
subsequent structural strength finds difficulties in loading greater 
external stresses. Hence, the mechanical performances at the maximum 
stress point are highly crucial for the property degradation and fracture 
evolution of the random porous structure. 

The von Mises stress distributions, maximum strain distributions, 
and historical energy distributions for different feature lengths are 
shown in Fig. 9 for structural performance under maximum stress. For 
the structure with small pores, stress and strain are distributed in more 
concentrated points in the porous network before approaching fracture, 
and this porous structure has more energy storage points, allowing more 
historical energy to be absorbed. Large pores, on the other hand, are 
subjected to concentrated stresses and strains at fewer points. A sudden 
fracture occurs at fewer points after maximum stress status, easily 
forming a penetration crack network and ultimately leading to struc
tural failure. 

3.2. Results of the vertically flattened samples with different λx and λy 

The numerical results of vertically flattened random porous struc
tures are achieved, for three samples shown in Fig. 10 with (a) λx = 5.0 
and λy = 3.0, (b) λx = 10.0 and λy = 3.0, and (c) λx = 10.0 and λy = 5.0. 
Similarly, each stress–strain response has at least one rapid drop cor
responding to the morphology of crack evolution. The average trans
verse length of the pores correlates with λx. The fracture occurs at the 
necking between two pores with a longer transverse length, resulting in 
the production of numerous cracks that eventually unite to form a long 
transverse crack. The crack number of the random pore structure de
creases as the λx grows larger, while the average crack length increases. 
In comparison to λx, λy has a minor effect on the crack number and 
length. The fracture process for the porous structure with a small pore 
size is slow, consistent with the isotropic random porous structure, and it 
takes longer to reach the maximum stress, as illustrated in Fig. 10 (a). 
The maximum stress is attained quickly in the random porous structure 
with large pores, and the fracture develops into structural collapse in a 
considerably shorter time, as seen in Fig. 10 (b) and (c). 

Larger portions of the random porous structures have considerable 
stress and strain distributions for smaller λx during maximum stress, as 
shown in Fig. 11. Moreover, random porous structures with smaller 
transverse pore lengths display bigger regions with pronounced histor
ical energies in the region of historical energy distribution, implying 
greater regions for energy storage. As a result, fracture energy in 
structures with smaller pore sizes is shown to be higher. 

As depicted in Fig. 12, the stress–strain response of a longitudinally 
flattened sample with λx = 3.0 and λy = 5.0 is obtained to investigate the 
anisotropic properties of the spatial morphologies. During the fracture 
process, the longitudinally flattened sample exhibits a greater tensile 
strength than the vertically flattened sample. In addition, the longitu
dinally flattened sample has longer crack lengths than the vertically 
flattened sample, requiring greater fracture energy to form a penetration 
crack and cause material failure. In order to investigate the weakness 
direction of the random porous structures as well as the actual pressure- 
sintered Ag process, this paper focuses on vertically flattened samples. 

The results for these six random structures have never been more 
consistent or representative. Therefore, the mechanical properties of 
420 random samples are statistically analyzed, including Young’s 
modulus, UTS, and average historical energy at maximum stress. The 
effects of pore size and shape on the mechanical properties are investi
gated in the following section. 

Table 1 
Material properties of the sintered nano
particle silver.  

ρ 10 400 g/m3 

E 81.50 GPa 
σmax 300 MPa 
v 0.38 
gc 2.4 J/m2 

l 0.4 μm 
n 3 
k 2  
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Fig. 8. Stress–strain responses with crack evolutions for isotropic random porous structures, where (a) λx = 3.0 and λy = 3.0, (b) λx = 5.0 and λy = 5.0, and (c) λx =

10.0 and λy = 10.0. 
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4. Discussions 

The random porous structure impacts the mechanical properties and 
fracture behavior, even with the same porosity. To begin, the material 
properties for 420 random samples are statistically investigated for 
random porous structures with various transversal and longitudinal 
feature lengths, including Young’s modulus, UTS, and average historical 
energy at the maximum stress point. Furthermore, the effects of the 
mean, standard deviation, and maximum of pore sizes and shape factors 
on Young’s modulus, UTS, and average historical energy at the 
maximum stress are analyzed for 420 random samples by Pearson cor
relation coefficients and corresponding P-values, to achieve a better 
understanding for random porous structures. 

4.1. Young’s modulus 

Young’s moduli of 420 random samples are individually calculated 
and statistically examined for various combinations of λx and λy, as 
shown in Fig. 13 and Fig. 14. Fig. 13 depicts Young’s modulus of the 
random porous structure for each combination of λx and λy, where the 

dot color represents the ratio of λy to λx. Here, Young’s modulus of 
random porous structures rises as λy/λx rises. In other words, the random 
porous structures with vertically flattened pores have a considerable 
negative impact on Young’s modulus. Additionally, the fluctuation 
range of Young’s modulus is influenced positively by λx, the transverse 
feature length of random porous structures. The large pores introduce 
significant uncertainties into Young’s modulus, whereas the structure 
with small pores is considerably more stable in Young’s modulus. 
Meanwhile, Young’s modulus falls with decreasing λy for the same λx, 
implying that the longitudinal feature lengths of the random pores 
negatively affect the mean value of Young’s modulus. 

Fig. 14 illustrates the statistical distributions of Young’s modulus 
grouped by λy/λx and λx for the calculated samples. As shown in Fig. 14 
(a), the variance of Young’s modulus distribution is nearly the same for 
different λy/λx, while the mean value is shifted to the right, indicating 
that the ratio improves Young’s modulus. Fig. 14 (b) depicts the effect of 
λx on the statistical distribution of Young’s modulus. The distribution 
curves shift to the left as the λx increases, changing from steep to flat. 
The larger the λx, the higher the variance and the lower the mean value 
of Young’s modulus distribution. 

Fig. 9. The distributions of Mises stress, maximum principal strain, and historical energy for isotropic random porous structures, where (a) λx = 3.0 and λy = 3.0, (b) 
λx = 5.0 and λy = 5.0, and (c) λx = 10.0 and λy = 10.0. 
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4.2. Ultimate tensile strength 

Fig. 15 and Fig. 16 give the statistics and analysis of UTS for 420 
random samples with various combinations of λx and λy. Fig. 15 illus
trates the UTS of the random porous structure for each combination of λx 
and λy utilizing the λy/λx-dependent colored dots. The UTS of the random 
porous structures drops when the color goes from blue to red, and the λy/ 
λx moves from large to small. λx influences the UTS data fluctuations, 

with larger λx resulting in larger fluctuations; and for the same λx, the 
larger the λy, the larger the UTS data mean and variance. 

Fig. 16 provides the statistical distribution of the UTS data for 
various λy/λx and λx in more detail. The mean value of UTS in Fig. 16 (a) 
increases as the λy/λx increases, indicating that the isotropic random 
porous structure has a higher UTS than the flattened porous structure. 
Additionally, the variation of UTS grows with increasing λy/λx. For 
isotropic random porous structures, the UTS can be considered to be 

Fig. 10. Stress–strain responses with crack evolutions for vertically flattened random porous structures, where (a) λx = 5.0 and λy = 3.0, (b) λx = 10.0 and λy = 3.0, 
and (c) λx = 10.0 and λy = 5.0. 
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more influenced by the randomness of pore distributions. As shown in 
Fig. 16(b), the UTS distribution curve evolves from a prominent peak on 
the left to a flattened one on the right when λx increases. The mean value 
and concentration of UTS are affected by λx values, with the bigger the 
λx, the smaller and more variable the UTS. 

4.3. Average historical energy at the maximum stress point 

Shortly after the maximum stress point, the crack usually propagates 
rapidly, with the percentage of the transverse size of the crack- 
connected pore network exceeding sixty percent, and a sharp fall in 
the stress weakens the structural ability to carry additional loads. Here, 
the average historical energies of the elements in random porous 
structures at the maximum stress point are calculated and analyzed. The 
average historical energy significantly represents the energy absorption 
of structural fracture and characterizes the global degradation of the 
structure due to historical energy-driven material degradation. There
fore, the average historical energies at the maximum stress point for 420 
random samples are statistically analyzed in Figs. 17 and 18. 

A scatter plot of the average historical energy of the 420 random 
samples, grouped by λx and λy, is shown in Fig. 17. The λy/λx has a sig
nificant impact on the average historical energy of the random porous 
structure, as indicated by the dot color. The historical energy at the 

maximum stress point is smaller with a smaller λy/λx, and the structure 
has poorer energy absorption performance. Meanwhile, as feature 
lengths increase, the average historical energy fluctuates widely and 
becomes more susceptible to the randomness of the structure. 

Next, the average historical energy distributions grouped by λy/λx and 
λx are demonstrated in Fig. 18 (a) and (b). The mean and variance of the 
average historical energy distribution increase as λy/λx increases, and the 
distribution curve shifts from left to right, as shown in Fig. 18 (a). With the 
λx increasing, the mean of the average historical energy distribution falls, 
but the variance of the distribution rises, as shown in Fig. 18 (b). 

4.4. Effect of pore size and shape factor 

An approach of correlation analysis in statistics is used to describe 
and explain the relationships between the mechanical properties and the 
pore features of random porous structures to investigate the effect of 
pore size and shape factors. In this paper, the mechanical properties of 
random porous structures are discussed, including Young’s modulus, 
UTS, and average historical energy at maximum stress point. And the 
pore features primarily focus on the pore size and shape factor’s average 
value, standard deviation, and maximum value. The Pearson correlation 
coefficients with the P-values between the mechanical properties and 
the pore features for the 420 samples are computed, as shown in Fig. 19. 

Fig. 11. Distributions of Mises stress, maximum principal strain, and historical energy for vertically flattened random porous structures, where (a) λx = 5.0 and λy =

3.0, (b) λx = 10.0 and λy = 3.0, and (c) λx = 10.0 and λy = 5.0. 
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Fig. 12. Stress–strain responses with crack evolutions for longitudinally flattened random porous structures with λx = 3.0 and λy = 5.0.  

Fig. 13. The scatter plot of Young’s modulus in various combinations of λx and λy for 420 random samples.  

Fig. 14. Young’s modulus distributions grouped by (a) λy/λx and (b) λx for 420 random samples.  
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Fig. 15. The scatter plot of UTS in various combinations of λx and λy.  

Fig. 16. UTS distributions grouped by (a) λy/λx and (b) λx for 420 random samples.  

Fig. 17. The scatter plot of average historical energy at maximum stress point in various combinations of λx and λy.  
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The coefficients with the P-values allow us to evaluate not only the 
correlations between every-two different parameters but also identify 
the significance of these correlations. 

The pore size is inversely proportional to the pore number for a given 
porosity, capturing the overall features of the random porous structure. 
The average of the pore sizes in 420 random samples can be used to 
analyze the pore numbers, under the same porosity and total area, for 
effect on the mechanical properties and fracture performances of the 
random porous structure. 

The pore size average and standard deviation have a significant 
positive correlation with Young’s modulus. However, the maximum 
value of pore sizes is irrelevant to Young’s modulus. Young’s modulus is 

primarily influenced by the overall features of pore size rather than the 
maximum pore size or weakest point, as evidenced by the insignificant 
effect of the maximum pore size. The smaller the average pore size, that 
is, the greater the pore number, the more uniformly the random porous 
structure can withstand stress distribution. At a small strain, the random 
porous structure with a small pore size distributes stresses uniformly in 
all corners, allowing for more stress concentration points. More points of 
stress concentration in fracture phase-field modeling imply phase-field 
rising and stiffness degradation of more elements in random porous 
structures, leading to a smaller Young’s modulus. Furthermore, an in
crease in the average pore size will result in a larger standard deviation. 
Under the influence of the average pore size, the correlation between the 

Fig. 18. Average historical energy distributions grouped by (a) λy/λx and (b) λx for 420 random samples.  

Fig. 19. Pearson correlation coefficients with the P-values between the mechanical properties and the pore features for the 420 samples, where the mechanical 
properties include Young’s modulus, UTS, and average historical energy at a maximum stress point and the pore features contain the pore size and shape factor’s 
average value, standard deviation, and maximum value. 
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standard deviation and Young’s modulus is significant. The UTS is not 
significantly related to the pore sizes’ average, standard deviation, and 
maximum values, as shown in Fig. 19. It is preferable that UTS is less 
sensitive to the global distribution of pore size and is more concerned 
with local features such as pore shape. The average, standard deviation, 
and maximum values of pore size are all significantly negatively corre
lated with average historical energy. The descending order of the 
Pearson correlation coefficients and the significance is the maximum, 
the standard deviation, and the average pore size. Here, the more energy 
the structure absorbs, the smaller the average pore size and the more 
uniform the pore distribution, implying a higher average historical en
ergy. Moreover, the average historical energy at the maximum stress 
point could be the initial fracture point. With a larger maximum pore 
size, it is easier to crack at an earlier stage and suffer less historical 
energy. As a result, for random porous structures, a more uniform dis
tribution of smaller pores increases the loading historical energy at the 
maximum stress point while decreasing Young’s modulus. The shape 
factor is primarily concerned with the regularity of a single pore. The 
smaller the shape factor, the further a single pore deviates from circu
larity. Each pore’s local features can be reflected by the shape factor. As 
shown on the right side of Fig. 19, the shape factors of each pore in each 
random porous structure are counted, and the average, standard devi
ation, and maximum values of the shape factors are given separately. 

For 420 random samples, the average shape factor has a strong posi
tive relationship with Young’s modulus, UTS, and average historical 
energy at the maximum stress point, which has a more significant impact 
than pore size. Hence Young’s modulus of the random porous structure 
increases when the pore shape is biased toward circularity. Because the 
strains around the circular pores are fairly uniformly distributed, more 
elements in the structure can participate in the stress loading. For the 
same small displacement, random porous structures with larger shape 
factors show larger reaction forces. Similarly, in the random porous 
structure with a larger shape factor, cracks are more difficult to formulate 
owing to the more uniform stress distribution, enabling a larger UTS of 
the structures. Meanwhile, due to the larger UTS, more historical energy 
is absorbed in the random porous structure at the maximum point. 
However, the standard deviation and maximum values of the shape fac
tors are mostly unrelated to the mechanical properties, including Young’s 
modulus, UTS, and average historical energy. Exceptionally, the standard 
deviation has a weakly negative relationship with Young’s modulus, 
while the maximum value has a weakly positive relationship with the 
average historical energy. From a considerable perspective, Young’s 
modulus tends to be influenced by the overall features, with the fluctu
ations in shape factor causing Young’s modulus to decrease. In contrast, 
historical energy is more sensitive to local features, and the maximum 
value of the shape factor can affect energy absorption. 

5. Conclusions and remarks 

In this paper, a computational framework consisting of a Gaussian 
random field model and a fracture phase-field model is established to 
investigate the effect of pore feature distributions on the mechanical 
properties and fracture behavior of random porous structures. A one-cut 
Gaussian random field model is developed to efficiently generate the 
microstructure distributed with random pores with specific features in 
pore size, pore shape, and pore distribution. The pore size and shape 
factor of the random porous structure with fixed porosity are statistically 
analyzed, and the effect of different combinations of feature lengths on 
the pore size and shape factor is further investigated. The detailed 
analysis is performed based on our research in sintered silver nano
particles, a typical random porous material. A fracture phase-field model 
with a high-accuracy degradation function for this material is created 
and discussed. Then, a reasonable strategy for determining the appro
priate parameters of exponential degradation functions to match the 

actual mechanical response and fracture process is provided by the one- 
dimensional analytical fracture phase-field model. 

Gaussian random fields have the advantage of being able to generate a 
large number of random samples. Accordingly, 21 combinations of 
feature lengths are chosen for random porous structures to generate 420 
random samples with a porosity of 0.20. Using the numerical tensile re
sults of 420 samples based on the phase-field model, we address the 
statistical properties of Young’s modulus, UTS, and average historical 
energy at maximum stress point for different combinations of length 
features. Our findings show that the sum of feature lengths influences the 
variation of mechanical properties, whereas the feature length ratio 
shows the effects on the mean value of mechanical properties. Further
more, Pearson correlation coefficients and their P-values are utilized to 
examine the relationships between mechanical properties such as 
Young’s modulus, UTS, and average historical energy, and the statistics of 
pore size and shape components in random porous structures. One 
interesting finding is that the average pore size primarily represents the 
material’s global properties and has a direct impact on Young’s modulus. 
Another considerable outcome is that the maximum pore size shows some 
anisotropic local properties and influences negatively on the average 
historical energy. Moreover, the shape factor averages contribute to the 
stress distribution around every single pore and significantly affect 
Young’s modulus, UTS, and average historical energy. 

The numerical approach is primarily used to generate and analyze 
two-dimensional random porous structures. More studies can be done in 
the future to expand into the three-dimensional structure to gain a better 
understanding of the correlation of true microstructure with mechanical 
behavior. The relationship between three-dimensional spatial distribu
tion features and mechanical properties can be investigated for random 
porous structures as well. On the basis of the meso-scale random porous 
structures, a macroscopic investigation, such as single-notched problems, 
can be conducted to gain additional insights. In addition, a huge number 
of random samples generated by our approach can be studied more 
effectively by machine learning. Efficient and fast links between random 
porous structure and mechanical characteristics can be developed by 
machine learning, which can drastically reduce computational con
sumption and achieve microstructure-based material attributes more 
quickly. In summary, the established method can be used to investigate 
the mechanical properties and fracture behavior of random porous 
structures subject to the variables related to their microstructural fea
tures. The certainty and uncertainty of random porous materials are being 
further explored by analyzing the statistical properties of pore features, 
which has the potential for reliability-based material design and opti
mization for numerous applications in the future. 
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Appendix A. One-dimensional analytical model analysis 

To begin, the fracture phase-field model introduces a diffuse approximation of the sharp crack. An exponential crack phase-field function in a one- 
dimensional bar proposed by Miehe as 

ϕ(x) = exp
(

−
|x|
l

)

, (A.1)  

where l is the length scale parameter. Its value is one at x = 0, and zero at x→±∞, shown in Fig. A1(a). Referring to Miehe (Miehe et al., 2010), a 
fracture surface of the phase-field function for the one-dimensional diffuse crack is introduced as 

Γ =

∫

Ω
γ(ϕ,ϕ

′

)dΩ =
1
2l

∫

Ω

(
ϕ2 + l2ϕ

′ 2)
dΩ, (A.2)  

where γ (ϕ, ϕ’) is the crack surface density in one dimension. Integrating the work done by an external force, deformation, and fracture, the regularized 
total potential energy for the one-dimensional bar can be written as 

Π = Ψ − W =

∫

Ω
[g(ϕ)ψ(∊)+ gcγ(ϕ,ϕ

′

) ]dΩ −

∫

Ω
b • udΩ −

∫

∂Ωt
t • udS, (A.3)  

in which g (ϕ) is the degradation function of phase-field value, ψ(∊) is the potential strain energy density, gc is the energy release rate, Ω denotes the 
Dirichlet boundary condition of the body force b, and ∂Ωt denotes the Neumann boundary condition of the traction t. Further, the variational equation 
of the total energy is obtained as 

δΠ =

∫

Ω
g(ϕ)

dψ
d∊

: δ∊dΩ −

∫

Ω
b • δudΩ −

∫

∂Ωt
t • δudS+

∫

Ω

[
g′(ϕ)ψ(∊)δϕ+

gc

l
(
ϕδϕ + l2ϕ

′

δϕ
′) ]

dΩ. (A.4) 

This variational equation can be divided into two parts, comprising the weak form of the governing equations, one related to δu and the other 
related to δϕ, given by 
∫

Ω
g(ϕ)

dψ
d∊

: δ∊dΩ −

∫

Ω
b • δudΩ −

∫

∂Ωt
t • δudS = 0, (A.5)  

∫

Ω

[
g

′

(ϕ)ψ(∊)δϕ+
gc

l
(
ϕδϕ + l2ϕ

′

δϕ
′) ]

dΩ = 0. (A.6) 

Accordingly, the equivalent strong form of the governing equations for the one-dimensional condition can be written as 

d
dx

(

g(ϕ)
dψ
d∊

)

+ b = 0onΩ, (A.7)  

g(ϕ)ψ ′(∊) = ton∂Ωt, (A.8)  

u = uon∂Ωu, (A.9)  

gcl
d2ϕ
dx2 −

gc

l
ϕ = g

′

(ϕ)ψ(∊)on Ω, (A.10)  

dϕ
dx

= 0on ∂Ω. (A.11) 

Fig. A1. (a) Phase-field for the diffuse crack with equation (A.1). (b) Boundary conditions for a 1D tensioned bar.  
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Referring to Sargado (Sargado et al., 2018), the boundary conditions are set as those illustrated in Fig. A1(b), where the one-dimensional ho
mogenous bar is from -L to L with u(±L) = ±u0 and ϕ’ (±L) = 0. Regarding dψ/d∊ = σ and the body force b = 0, the strong formulations of the 
governing equations can be simplified to 

d
dx

[g(ϕ)σ(∊)] = 0, (A.12)  

gcl
d2ϕ
dx2 −

gc

l
ϕ = g′

(ϕ)ψ(∊). (A.13) 

For this one-dimensional problem, we deem the stress and phase-field value uniformly distributed across the bar without spatial irrelevance, i.e., σ 
(x) ≡ σ and ϕ(x) ≡ ϕ. Equations (A.12) and (A.13) are reduced to 

−
gc

l
ϕ = g′

(ϕ)ψ(∊). (A.14) 

The strain energy driving the fracture can be computed using the material parameter E and the strain ∊, given by 

ψ(∊) = 1
2

σ(∊)∊ =
1
2

E∊2. (A.15) 

Substitute (A.15) into (A.14), we obtain the strain function ∊ (ϕ), depending on the phase-field ϕ, derived as 

∊(ϕ) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

−
2gcϕ

Elg′
(ϕ)

√

, (A.16)  

which represents the strain degradation process based on the given degradation function. Additionally, the relationship between the stress σ and the 
strain ∊ is defined as 

σ = E∊ (A.17) 

Furthermore, the degraded stress g(ϕ)σ(ϕ), derived from equations (A.16) and (A.17), shows the apparent status of the overall stress in the one- 
dimensional bar subjected to tension, shown as 

g(ϕ)σ(ϕ) = g(ϕ)E∊(ϕ) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

−
2Egcϕ[g(ϕ) ]2

lg′
(ϕ)

√

. (A.18) 

To eliminate the dependency of the apparent stress and strain on the material parameters E, l, and gc, representative stress g(ϕ)σ(ϕ)
̅̅̅̅̅̅̅̅̅̅̅
l/Egc

√
and 

strain ∊(ϕ)
̅̅̅̅̅̅̅̅̅̅̅
El/gc

√
are constructed with only respect to the phase-field value and its degradation function, displayed as 

∊(ϕ)
̅̅̅̅̅̅̅̅̅̅̅
El/gc

√
=

̅̅̅̅̅̅̅̅̅̅̅
− 2ϕ
g′
(ϕ)

√

, (A.19)  

g(ϕ)σ(ϕ)
̅̅̅̅̅̅̅̅̅̅̅
l/Egc

√
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

− 2ϕ[g(ϕ) ]2

g′
(ϕ)

√

. (A.20) 

As illustrated in analytical equations (A.19) and (A.20), the phase-field value and its degradation function play an essential role in the stress–strain 
response during the cracking processes under the phase-field description. That is, the degradation function can govern the corresponding stress–strain 
behavior directly. Hence, we draw attention to degradation functions with various parameter values that might characterize mechanical behavior 
throughout the material degrading process. 

The typical quadratic-type degradation function is utilized as a baseline for the suitable stiffening processes to avoid the high phase field value of 
the damaged material, with the degradation function g2(ϕ) and its first-order derivative function g2

′ (ϕ) provided by 

g2(ϕ) = (1 − ϕ)2
, (A.21)  

g′

2(ϕ) = 2(ϕ − 1). (A.22) 

By substituting (A.21) and (A.22) into (A.19) and (A.20), the representative strain expression of ϕ is derived as 

∊(ϕ)
̅̅̅̅̅̅̅̅̅̅̅
El/gc

√
=

̅̅̅̅̅̅̅̅̅̅̅̅
ϕ

1 − ϕ

√

, (A.23)  

and the representative strain expression of ϕ is given by 

g(ϕ)σ(ϕ)
̅̅̅̅̅̅̅̅̅̅̅
l/Egc

√
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ϕ(1 − ϕ)3
√

. (A.24) 

According to the above expressions, the strain value of the quadratic degradation function grows as the phase-field increases. The stress value, on 
the other hand, initially rises and subsequently falls. Fig. A2 depicts this baseline with the black dashed line. 

Due to its high accuracy and excellent flexibility to quantify the material degradation, an exponential-type degradation function ge(ϕ) with two 
attributes k and n is defined as (Sargado et al., 2018) 

ge(ϕ; k, n) =
1 − e− k(1− ϕ)n

1 − e− k , (A.25) 
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and its first-order derivative function ge’ (ϕ) is expressed as 

g′

e(ϕ; k, n) = −
nk(1 − ϕ)n− 1e− k(1− ϕ)n

1 − e− k . (A.26) 

Similarly, the analytical expressions of the apparent stress and strain are 

∊(ϕ)
̅̅̅̅̅̅̅̅̅̅̅
El/gc

√
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2ϕ(1 − e− k)

nk(1 − ϕ)n− 1e− k(1− ϕ)n

√

, (A.27)  

and 

g(ϕ)σ(ϕ)
̅̅̅̅̅̅̅̅̅̅̅
l/Egc

√
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2ϕ[1 − e− k(1− ϕ)n
]
2

nk(1 − ϕ)n− 1
(1 − e− k)e− k(1− ϕ)n

√

. (A.28) 

Fig. A2 demonstrates the profiles of g(ϕ) and its derivative g’ (ϕ), as well as the ∊-ϕ and σ-ϕ curves for various combinations of k and n, where k ranges 
from 0.5 to 3.0 and n ranges from 1.5 to 6.0. Fig. A2 (a)-1, (a)-2, (a)-3, and (a)-4 show a continuous degradation of material stiffness with the increasing 
phase-field value. When the phase-field value is zero, the degradation function value is one, indicating that the material is undamaged. For a phase-field 
value of one, however, the material entirely failed with a degradation value of zero. As the baseline of the degradation function, g2(ϕ) characterizes the 

Fig. A2. Effect of different combinations of k and n on functions of the phase-field value. (a) the degradation function, (b) the derivative of the degradation function, 
(c) the representative strain function, and (d) the representative stress function. 
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convex function, implying that as the phase-field value increases, the degradation rate of the material decreases. Fig. A2 (a)-1 shows that for k = 0.5, the 
degradation functions ge(ϕ) are convex, which is consistent with g2(ϕ). As k increases, the degradation function gradually shifts from an overall convex 
function to a profile with varying degradation rates associated with pre-increasing and post-decreasing. Besides the effect of k, a greater n causes an 
overall downward depression in the degradation function, increasing the degradation rate in the front section. Fig. A2 (b)-1, (b)-2, (b)-3, and (b)-4 show 
more detailed illustrations of the degradation rate variation trend, where the degradation rate is negative, in agreement with Fig. A2 (a). 

Fig. A2 (c)-1, (c)-2, (c)-3, and (c)-4 depict the relationships between the representative strain and phase-field value, where the phase-field value 
runs from 0.0 to 1.0, and the strain varies from 0.0 to 3.0. The strain shows a positive correlation with the phase-field value. With phase-field values 
ranging from 0.0 to 0.4, k mostly impacts the increase rate of strain in the forward part of the curves for different degradation functions. Additionally, n 
influences the phase-field value at the last point (∊(ϕ)

̅̅̅̅̅̅̅̅̅̅̅
El/gc

√
= 3.0) of the profile, that is the phase-field value of the broken material under the strain 

criteria. At the representative strain of 3.0, the phase-field value increases as n decreases. When n is large, the strain characteristics of brokenness 
appear even at low phase-field values. When n is 6.0, the phase-field value is nearly fractured around 0.6, which is inconsistent with the actual fracture 
situation. A smaller n gives a better indication of the actual fracture, particularly a brittle fracture. 

Fig. A2 (d)-1, (d)-2, (d)-3, and (d)-4 depict typical stresses versus phase-field value. In this case, the phase-field value ranges from 0 to 1, and the 
stress rises from 0 to a maximum value before falling back to 0. k has a positive effect on the ascent rate in the stress-rising zone. However, n cor
responds to the maximum stress with a negative correlation. To summarize, a larger k and a smaller n can better represent a delayed decline up to 
maximum stress and a fast degradation after maximum stress, also known as a brittle fracture. 

Fig. A3 demonstrates the stress–strain responses in the one-dimensional bar using the above combinations of k and n. The curves are single-peaked, 
climbing from zero to maximum stress and then decreasing from there to zero. The initial part of the rising phase in the curve, an approximately linear 
increase, displays the elastic properties of the material. The length of the elastic part grows as k increases. In the meantime, while n decreases, the 

Fig. A3. The stress–strain response curves with the different combinations of k and n. (a) k = 0.5, (b) k = 1.0, (c) k = 2.0, and (d) k = 3.0.  
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length of the elastic part expands as well. Furthermore, the fracture rate is remarkable after the maximum stress point. The fracture rate of the baseline 
g2(ϕ) is slow, and the material took an extended time to degrade to failure, which is incongruous with the actual fracture. As detailed in Fig. A3(a)-(d), 
a larger k combined with a smaller n allows the material to fracture quickly. As a result, the preferred k and n are selected to replicate the desired brittle 
fracture. 

As shown in Fig. A3, the maximum stress point is a great representative, relating both mechanical properties and the fracture process. This point 
shows not only the tolerable stress ability of the material but also the phase-field degradation approaching the material fracture, which has a sub
stantial impact on the fracture rate. Fig. A4 delves deeper into the maximum stress point. First, the baseline g2(ϕ) is solved. Let the first-order de
rivative of the equation (A.24) be 0 to achieve the maxima, as follows: 
[ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ϕ(1 − ϕ)3
√ ]′

=
1
2
ϕ− 1

2(1 − ϕ)
1
2(1 − 4ϕ) = 0, (A.29) 

Because ϕ ranges from 0.0 to 1.0, and the stress is zero when ϕ is 0.0 or 1.0. We obtain the maximum stress point at 

ϕ =
1
4
. (A.30) 

Further, the degradation value, strain, and stress are calculated as 

g2(ϕ) =
9
16
, (A.31)  

∊(ϕ)
̅̅̅̅̅̅̅̅̅̅̅
El/gc

√
=

̅̅̅
3

√

3
, (A.32)  

g(ϕ)σ(ϕ)
̅̅̅̅̅̅̅̅̅̅̅
l/Egc

√
=

3
̅̅̅
3

√

16
. (A.33) 

When the brittle fracture occurs, the material has a rapid decline in stress and is broken shortly after passing the maximum stress point. However, 
the ϕ is 1/4 at the maximum stress point, and the g2(ϕ) is only 0.5625, which is less than 0.60. With increasing ϕ, the degradation rate decreases 
unexpectedly, resulting in a delayed fracture. To select a reasonable k and n combination, the ϕ, ge(ϕ), stress, and strain at the maximum stress point 
concerning n are given for various k, where n varies from 1.25 to 6.0 and k is 0.5,1.0,2.0, or 0.3, as shown in Fig. A4. The ϕ, ge(ϕ), stress, and strain at 
maximum stress point all drop as n grows in Fig. A4 (a)-(d). Except for the decreasing trend of the ϕ, the ge(ϕ), stress, and strain all increase 
significantly as k increases. In some suitable locations of Fig. A. 4, the combination of k and n is found and selected based on the actual maximum stress 
conditions. Here, k and n are determined with ge(ϕ) greater than 0.75 the maximum stress point, and the stress and strain close to those of baseline g2. 
In this case, k and n are chosen to be more than 2.0 and 2.0 to 3.5, respectively. 

Fig. A4. Relationships between ϕ-related variables and n with various k at the maximum stress point. (a) ϕ, (b) g(ϕ), (c) stress, and (d) strain.  
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